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Abstract
In this paper we review recent developments towards a realistic description of the electronic
structure and magnetism of correlated nanosystems. A new class of so-called continuous-time
solvers for the quantum impurity problem is discussed, which provides a numerically exact
solution without systematic errors due to imaginary time discretization. These solvers are able
to handle general interactions, like the full Coulomb vertex. We further show how four-point or
higher-order correlation functions of the impurity problem can be computed. This allows the
calculation of dynamical susceptibilities which provide information about spin excitations.
Moreover, we discuss a principally new many-body scheme recently proposed for the
description of non-local correlations in strongly correlated systems. This approach provides a
basis for a many-body description of extended correlated nanostructures on a substrate.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding correlated nanosystems is at the heart of
modern condensed matter physics. Advances in experimental
techniques have rendered it possible to manipulate, control and
investigate matter on the nanoscale. This has opened up a
whole new world of opportunities and raised new questions
concerning the role of many-body effects in geometrically
constrained systems.

Nowadays, nanostructures are almost routinely assembled
by moving individual atoms on a surface with atomic
precision [1] or through processes of self-organization [2].
Scanning tunneling microscopy allows us not only to
manipulate, but also to directly probe, the magnetism and
spectral properties of nanosystems on metallic or semimetallic
substrates. Spin excitation spectra and collective modes can
be probed by inelastic tunneling spectroscopy [3], and recently
even the hysteresis of individual atoms was observed [4].

An important issue in understanding nanosystems is the
effect of the correlations. These are usually enhanced due
to the reduced dimensionality. The interplay between spin

and charge degrees of freedom in conjunction with the many-
body character of a system can give rise to new exotic ground
states or induce low energy many-body resonances, like the
Kondo effect [5]. The interaction of magnetic adatoms with
a metallic surface or magnetic interactions between atoms can
significantly alter the spectral properties of a nanosystem [6].
Furthermore, the spectral properties turn out to be sensitive to
geometry [7, 8].

A further topic of fundamental research is the evolution
of magnetism from single atoms to extended nanostructures
such as islands [9] and chains [10, 11] on surfaces. In
low-dimensional systems fluctuations become important and
long-range order at finite temperature is prohibited in truly
one- or two-dimensional systems by the Mermin–Wagner
theorem [12]. Nevertheless, it has been demonstrated that Co
atoms on a Pt surface indeed exhibit ferromagnetism below
a critical temperature [13]. The question remains how the
interplay of anisotropies, interaction with the substrate and
correlations result in an ordered state and clearly requires a
realistic description of the system as a whole.

Another nontrivial aspect is the material dependence.
The framework of density functional theory (DFT) provides
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a quantitative description of many materials. While
providing predictive power for properties such as equilibrium
positions [2] or exchange interactions [14], the failure
of approximations to the DFT, such as the local density
approximation (LDA), to capture the physics of strong
correlations renders a realistic description of correlated low-
dimensional nanosystems difficult. On the other hand, many-
body approaches for the correlated system usually employ
simple model Hamiltonians to describe the effect of the
correlations and hence can overlook a nontrivial material
dependence. In order to develop a material-specific theory
of magnetism of correlated nanosystems, methods are needed
to combine the ab initio with many-body approaches. A
successful route to incorporate the material aspect into many-
body computations is the combination of the dynamical mean-
field theory (DMFT) with the local density approximation,
the so-called LDA + DMFT approach [15]. The DMFT
maps the lattice problem onto an effective local multiorbital
quantum impurity problem subject to a self-consistency
condition for the impurity-bath hybridization function. The
material dependence as described by the corresponding LDA
Hamiltonian enters here. Magnetic adatoms on a metallic
surface can also be described in terms of an impurity model
in which the hybridization with the host material contains
the material-specific features. However, the solution of
the underlying multiorbital quantum impurity problem still
remains a formidable task. Quantum Monte Carlo methods
are used as a standard tool for this purpose. A well-known
type of solver is the Hirsch–Fye algorithm [16]. It is based on
a discretization of the imaginary time interval into time slices
and a Trotter breakup of the partition function. A Hubbard–
Stratonovich transformation is used to decouple the fermionic
degrees of freedom, which introduces an auxiliary field on each
of the time slices. The algorithm samples all configurations of
the auxiliary field. This approach has two major drawbacks:
the time discretization introduces systematic errors and the
scheme lacks decouplings for general types of interaction.

In the next section we will discuss two complementary
approaches to solve the quantum impurity problem that
overcome these problems [17–19]: these build on an expansion
of the imaginary time partition function in either the interaction
(weak coupling approach) or the impurity-bath hybridization
(strong coupling expansion) and the collection of diagrams
into fermionic determinants. These algorithms provide a
numerically exact solution of the problem, without any
systematic errors and can treat general interactions.

These techniques are the key tools for solving a single
multiorbital impurity problem. The calculation of the
properties of a collection of such impurities is, however, not
computationally feasible due to the exponential growth of the
Hilbert space. In order to tackle problems such as long-
range order or magnetism in extended nanostructures, different
approaches are required. Recently, a novel diagrammatic
expansion around the DMFT has been proposed in the context
of lattice problems [20]. This so-called dual fermion approach
allows us to incorporate spatial correlations into calculations
of strongly correlated systems. We will give a formulation
suitable for a realistic treatment of extended nanostructures

exerted to the influence of a substrate. We further discuss the
extension of this approach to the calculation of the two-particle
Green function which gives access to, for example, magnetic
instabilities of correlated systems [21].

2. Numerically exact solvers for the quantum
impurity problem

In this section we contrast the weak and strong coupling
continuous-time algorithms for solving the impurity problem.
For notational convenience, we consider the case of a single-
band Hubbard impurity in a bath described by the time-
dependent hybridization function �. The imaginary time
action for this particular case is given by

S =
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′ c∗

σ (τ )[∂τ − μ + �(τ − τ ′)]cσ (τ ′)

+ U
∫ β

0
dτ c∗

↑(τ )c↑(τ )c∗
↓(τ )c↓(τ ). (1)

Let us consider the weak coupling case first. A generalization
of the weak coupling algorithm to the multiorbital case and
for general non-local in time interactions can be found in [17].
Up to an irrelevant multiplicative constant, we can divide
the action into a Gaussian part S0 and an interaction part as
follows:

S0 =
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′ c∗

σ (τ )[∂τ − μ + �(τ − τ ′)

+ Uα−σ δ(τ − τ ′)]cσ (τ ′), (2)

SU = U
∫ β

0
dτ (c∗

↑(τ )c↑(τ ) − α↑(τ ))(c∗
↓(τ )c↓(τ )

− α↓(τ )). (3)

The introduction of the so-called α parameters will be to
control the sign problem, as discussed below. Defining
the average over the noninteracting system as 〈· · ·〉0 =
(1/Z0)

∫ · · · exp(−S0)D[c∗, c], the partition function Z =∫
exp(−S)D[c∗, c] may now be written in terms of a formal

series expansion of the exponential in the interaction term:

Z =
∞∑

k=0

∑

σ1

∫ β

0
dτ1 · · ·

∑

σk

∫ β

0
dτk sgn(	k) |	k | (4)

where

	k = (−1)k

k! U k〈(c∗
σ1

cσ1 − ασ1 )(c
∗
−σ1

c−σ1 − α−σ1 ) · · ·
· · · (c∗

σk
cσk − ασk )(c

∗
−σk

c−σk − α−σk )〉0. (5)

Since S0 is Gaussian, Wick’s theorem is applicable and
the above noninteracting average may be expressed as a
determinant of Green’s functions of the noninteracting system,
	k ∼ ∏

σ det ‖ Ĝi j σ ‖, Ĝi j σ = G0 σ (τi − τ j ) − ασ δi j . A
similar expansion can be written for Green’s function:

Gσ (τ − τ ′) = 〈c∗
σ (τ )cσ (τ ′)〉

=
∞∑

k=0

∑

σ1

∫ β

0
dτ1 · · ·

∑

σk

∫ β

0
dτk

× gσ (τ, τ ′; τ1, . . . , τk |σ1, . . . , σk) sgn(	k) |	k| (6)

2
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Figure 1. Left: imaginary time correlation function χloc(τ) = 〈Sz(τ)Sz(0)〉 for the two-plane Hubbard model on the Bethe lattice. Right:
corresponding dynamical susceptibility χloc(ω) obtained by analytical continuation of the imaginary time data [22]. t⊥ denotes the coupling
between the two planes. For small t⊥ the two planes couple antiferromagnetically. For t⊥ >

√
2 a singlet between opposing sites on the two

planes is formed, accompanied by the development of a spin gap in the dynamical susceptibility [23].

where g is a contribution to Green’s function which
can be expressed as a ratio of fermionic determinants.
The algorithm samples all possible configurations Ck =
{τ1, . . . , τk |σ, . . . , σk} of the system by a Markovian random
walk according to the probability distribution |	k |. A
complication arises in sampling equation (4) since 	k is
not positive definite: the stronger the sign fluctuates, an
increasingly large number of samples is required to acquire
proper statistics which may render the simulation unfeasible.
However, it can be shown that, for the interaction considered,
the ‘trivial’ sign problem introduced by the factor (−1)k is
completely suppressed by the choice α↑ = 1 − α↓. Other
choices for the α’s exist for more general interactions. An
important point is further to group diagrams with different
signs into the determinant. Sampling individual diagrams
would also result in a severe sign problem.

By evaluation of the ratio of determinants of matrices of
sizes k and k ± 1, it can be shown that the contributions to
Green’s function for a certain configuration can be obtained as

gσ (τ, τ ′; Ck) = G0σ (τ − τ ′)

−
k∑

i j=1

G0σ (τ − τi)Ĝ−1
i j σ G0σ (τ j − τ ′), (7)

where the elements of the matrix Ĝi j contain the noninter-
acting Green’s functions evaluated at the times corresponding
to the particular configuration. The Fourier transform of this
equation is given by

gσ (ω, ω′; Ck) = G0σ (ω)δω,ω′

− 1

β
G0σ (ω)G0σ (ω′)

k∑

i j=1

eiωτi Ĝ−1
i j σ e−iω′τ j , (8)

and allows us to sample the Green function directly on
Matsubara frequencies. Since the algorithm is based on
an expansion in the interaction, the contributions to Green’s
function appear as a correction to a known function (G0).
The Green functions obtained as the Monte Carlo (MC)
average G(τ − τ ′) = 〈g(τ, τ ′; Ck)〉MC depend only on the
time difference, while the quantities g(τ, τ ′; Ck) generally

do not. In analogy to Wick’s theorem, one may construct
the corresponding contributions to higher-order correlators.
For example, the spin–spin susceptibility 〈Sz(τ )Sz(0)〉 with
Sz = (n↑ − n↓)/2 can be expressed in terms of the averages
〈nσ (τ )nσ ′(0)〉 = 〈c∗

σ (τ )cσ (τ )c∗
σ ′(0)cσ ′(0)〉. The explicit

expression for contributions to this average, which can be
obtained by evaluating the determinant ratio for matrices of
size k and k ± 2, is given by

gσ (τ, τ ; Ck)gσ ′(0, 0; Ck) − δσσ ′ gσ (τ, 0; Ck)gσ (0, τ ; Ck),

(9)
and similar for other averages.

This allows the direct measurement of two-particle
functions in imaginary time and subsequent analytical
continuation to real frequencies, providing information about
two-particle (spin) excitations. As an example, we present
results for the two-plane Hubbard model on the Bethe lattice
in figure 1. The ‘instantaneous’ correlators, such as the double
occupancy D = limτ→0+〈n↑(τ )n↓(0)〉, can be accurately
obtained by numerical extrapolation of the limit. The two-
particle Green function χσσ ′

ωω′	 = 〈c∗
σω+	cσωc∗

σ ′ω′cσ ′ω′+	〉 can
be directly measured in the frequency domain using

gσ (ω + 	,ω; Ck)gσ ′(ω′, ω′ + 	; Ck)

− δσσ ′ gσ (ω + 	,ω′ + 	; Ck)gσ (ω′, ω; Ck). (10)

Let us now consider the algorithm based on the strong
coupling expansion. We discuss the formalism for the action
equation (1). The action is regrouped into the atomic part

Sat =
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′ c∗

σ (τ )[∂τ − μ]cσ (τ ′)

+ U
∫ β

0
dτ c∗

↑(τ )c↑(τ )c∗
↓(τ )c↓(τ ) (11)

and the part of the action S� which contains the hybridization
term. Now a series expansion for the partition function is
generated by expanding the exponential in the impurity-bath
hybridization (we omit spin indices to simplify the notation):

Z =
∫

e−Sat

∞∑

k=0

1

k!
∫ β

0
dτ1

∫ β

0
dτ ′

1 · · ·
∫ β

0
dτk

∫ β

0
dτ ′

k

× c(τ ′
1)c

∗(τ1) · · · c(τ ′
k)c

∗(τk)�(τ1 − τ ′
1) · · · �(τk − τ ′

k)

× D[c∗, c]. (12)

3
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Here the factor (−1)k is canceled out by reversing the order
of the c and c∗ in equation (1). The important observation is
that also in this case the functions � can be grouped into a
determinant. Starting with the time-ordered sequence of times
τk > · · · > τ1 corresponds to the integrand in equation (12).
Then there will be a contribution which stems from the same
set of times, but with times τk and τk−1 exchanged:

c(τ ′
1)c

∗(τ1) · · · c(τ ′
k−1)c

∗(τk)c(τ
′
k)c

∗(τk−1)

× �(τ1 − τ ′
1) · · ·�(τk − τ ′

k−1)�(τk−1 − τ ′
k). (13)

Upon time ordering this becomes

−c(τ ′
1)c

∗(τ1) · · · c(τ ′
k−1)c

∗(τk−1)c(τ
′
k)c

∗(τk)

× �(τ1 − τ ′
1) · · ·�(τk−1 − τ ′

k)�(τk − τ ′
k−1). (14)

The k! possible time orderings of the sequence hence yields
terms which contain the product of hybridizations, with
the times τi correspondingly permuted. Since each term
appears with the corresponding sign of the permutation, these
contributions can be grouped into a determinant:

Z = Zat

∞∑

k=0

∫ β

0
dτ1

∫ β

τ1

dτ ′
1 · · ·

∫ β

τ ′
k−1

dτk

∫ β

τk

dτ ′
k

× 〈c(τ ′
1)c

∗(τ1) · · · c(τ ′
k)c

∗(τk)〉at

× det ‖ �(τi − τ ′
j) ‖ . (15)

Here 〈· · ·〉at = (1/Zat)
∫ · · · exp(−Sat)D[c∗, c] denotes the

average over the impurity states, which can be computed
by exact diagonalization. The explicit time ordering in
equation (15) implies that a configuration may be viewed
as a collection of segments on the imaginary time interval
from 0 to β for each spin. The algorithm samples all
possible configurations of these segments. The weight of a
configuration is proportional to exp(−δτU), where δτ is the
overlap between segments for opposite spins. This accounts
for the Coulomb repulsion in case the site is doubly occupied.

The measurement of the Green functions has a similar
structure as in the weak coupling case. The measurements can
be performed in the time or frequency domain and are given by

Gσ (τ ) =
〈

k∑

i j=1

�̂−1
i j σ δ(τ, τi − τ j )

〉

MC

Gσ (ω) = 1

β

〈
k∑

i j=1

�̂−1
i j σ eiω(τi −τ j )

〉

MC

(16)

where �̂ is the matrix of hybridizations. A few notes on the
two approaches are in place: although the methods expand
around different limits, the algorithms are numerically exact:
in principle, all diagrams of a given problem are sampled
and hence both approaches will eventually converge to the
same result. The average perturbation order 〈k〉MC, which
determines the average size of the matrices which need to be
updated in every MC step, however, will be different for the
same problem. For the weak coupling solver the perturbation
order grows as U is increased, while in the strong coupling case
it increases with increasing hybridization strength. Hence the
two algorithms will perform differently in distinct parameter
regimes.

3. Extended nanosystems: the dual-fermion
formalism

In this section we review the dual-fermion formalism. We
introduce it in a formulation suitable for a realistic treatment
of nanosystems. A more detailed introduction can be found
in [20, 21].

Let us be specific and consider a system consisting of
a one-dimensional chain or two-dimensional overlayer of
multiorbital atoms on top of a metallic substrate. For notational
convenience, we introduce spinors cωkσ = (. . . , cωkσm, . . .),
c∗
ωkσ = (. . . , c∗

ωkσm, . . .). In this notation, for example, the
Green functions are matrices in orbital space. The system can
be modeled by means of the imaginary time action

S[c∗, c] = −
∑

ωkσ

c∗
ωkσ ((iω + μ)1 − hkσ ) cωkσ

+
∑

i

c∗
ωiσ (�(s)

ωσ )cωiσ +
∑

i

Hint[c∗
i , ci ], (17)

where ωn = (2n + 1)π/β, n = 0,±1, . . . are the Matsubara
frequencies, β is the inverse temperature, μ is the chemical
potential, σ =↑,↓ labels the spin projection and c∗, c are
Grassmann variables which embody the fermionic degrees
of freedom in the path integral representation. The index i
labels the lattice sites and the k vectors are quasimomenta.
Here hkσ is the dispersion of the Hamiltonian describing the
noninteracting freestanding chain. The (generally frequency-
dependent) matrix �(s) accounts for the hybridization with the
metallic or insulating substrate. The locality of Hint is the only
requirement for the otherwise arbitrary interaction. A realistic
description of the atomic degrees of freedom is provided by the
general Coulomb interaction

Hint[c∗
i , ci ] = 1

4

∫ β

0
dτ U1234c∗

i1(τ )c∗
i2(τ )ci4(τ )ci3(τ ), (18)

where U is the general antisymmetrized Coulomb vertex and,
for example, 1 ≡ {m1σ1} comprehends orbital and spin degrees
of freedom and summation over these states is implied.

Owing to the fact that efficient solvers exist to solve
the impurity problem, it seems natural to divide the action
equation (17) into a numerically exactly solvable local
impurity part and an itinerant bilinear term:

S[c∗, c] =
∑

i

Simp[c∗
ωiσ , cωiσ ] −

∑

ωkσ

c∗
ωkσ (�ωσ − hkσ ) cωkσ .

(19)
Here the additional hybridization � is introduced to describe
the local environment of an atom created by the atoms on all
other sites in the chain. The impurity problem, which can be
solved by the methods presented in the previous section, is now

Simp[c∗, c] = −
∑

ωσ

c∗
ωσ

(
(iω + μ)1 − �̃ωσ

)
cωσ +Hint[c∗, c],

(20)
where �̃ωσ = �ωσ + �(s)

ωσ . Now dual fermions are introduced
in the path integral via the Gaussian identity∫

exp(−f∗[g−1
ωσ (�ωσ − hkσ )−1g−1

ωσ ]f − f∗g−1
ωσ c − c∗g−1

ωσ f)

× D[f∗, f] = det(g−1
ωσ (�ωσ − hkσ )−1 g−1

ωσ )

× exp
(
c∗ (�ωσ − hkσ ) c

)
. (21)

4
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The variables f, f∗ represent the auxiliary (dual) degrees of
freedom. The original action becomes

S[c∗, c, f∗, f] =
∑

i

Ssite,i [c∗, c, f∗, f]

+
∑

ωkσ

[
f∗ωkσ g−1

ωσ (�ωσ − hkσ )−1g−1
ωσ fωkσ

]
(22)

where the local part of the action Simp is the only term that
retains degrees of freedom of the original fermions:

Ssite,i = Simp[c∗
i , ci ] + f∗ωiσ g−1

ωσ cωiσ + c∗
ωiσ g−1

ωσ fωiσ . (23)

Due to the locality of gωσ (the impurity Green function) the
summation over all states labeled by k in the second term could
be replaced by the equivalent summation over all sites. The
fact that Ssite decomposes into a sum of local terms is crucial
and allows us to integrate out the lattice fermions for each site
separately:
∫

exp
(−Ssite[c∗

i , ci , f∗i , fi ]
)D[c∗

i , ci ]
= Zimpe−(

∑
ωσ f∗ωiσ g−1

ωσ fωiσ +Vi [f∗i ,fi ]), (24)

where Zimp is the partition function of the impurity. Formally
this can be done up to all orders and, in this sense, the
transformation to the dual fermions is exact. The above
equation may be viewed as the defining equation for the dual
potential V [f∗, f]. After expanding both sides of equation (24),
integrating out on the left-hand side corresponds to averaging
over the impurity degrees of freedom. Equating the resulting
expressions by order, one finds that the dual potential in the
lowest-order approximation is given by

V [f∗, f] = 1
4

∑

i

γ
(4)
1234f∗i1f∗i2fi4fi3 + · · · , (25)

where

γ
(4)
1234 = g−1

11′ g−1
22′

[
χ

imp
1′2′3′4′ − χ

imp,0
1′2′3′4′

]
g−1

3′3 g−1
4′4 ,

χ
imp,0
1234 = g14g23 − g13g24

(26)

is the exact four-point reducible local vertex, constructed from
the two-particle Green function of the impurity. While in
principle higher-order momenta of the impurity appear in V ,
we will restrict ourselves to the lowest-order approximation in
the following.

After integrating out, the action depends on dual variables
only and can be written as

Sd[f∗, f] = −
∑

ωkσ

f∗ωkσ (Gd,0
ωkσ )−1fωkσ +

∑

i

V [f∗i , fi ], (27)

where the bare dual Green function is given by

Gd,0
ωkσ = −gωσ

[
gωσ + (�ωσ − hkσ )−1

]−1
gωσ . (28)

Up to now we have only reformulated the problem.
The solution can be obtained in terms of the self-energy by
performing a regular diagrammatic series expansion in the
potential V . In practice, the series for the dual potential and
the perturbation series need to be terminated at some point.

Figure 2. The first two lowest-order diagrams for the dual
self-energy �d.

The two lowest-order (skeleton) diagrams of this expansion
are shown in figure 2. The first diagram is local, while the
second brings in a non-local correction to the self-energy.
As we shall see in the next section, already this seemingly
crude approximation delivers very reasonable results. Since the
decomposition of the original problem into the impurity and
the itinerant parts is obviously independent of the hybridization
function �, this function has not been specified so far. We
construct a self-consistency condition for this quantity by
requiring that the lowest-order local correction, i.e. the first
diagram in figure 2, be zero. In this case we recover exactly
the self-consistency condition of the DMFT. Our expansion can
thus be seen as a perturbation expansion around the DMFT.
As is well known, the DMFT becomes exact in the limit of
infinite coordination number. Hence the DMFT hybridization
likely delivers a poor description of the local environment of
an atom, in particular for the low-dimensional structures in
nanosystems. Indeed we shall see in the next section that
the renormalization of the hybridization according to the self-
consistency condition is crucial for the scheme and strongly
improves the result for the 1D chain.

It should be pointed out that the above series expansion is
an expansion for the dual fermions and does not correspond to
the solution of the original problem. However, the fact that we
have introduced the dual fermions via an exact transformation,
equation (21), allows us to establish an exact relation between
original and dual quantities (the latter labeled by ‘d’), like the
Green function:

Gωkσ = (�ωσ − hσ (k))−1 g−1
ωσ Gd

ωkσ g−1
ωσ (�ωσ − hσ (k))−1

+ (�ωσ − hσ (k))−1 . (29)

A corresponding relation is also available for the two-particle
Green function. For clarity, we omit indices and write it
symbolically as

χ̃ = [
(� − h)−1g−1

] [
(� − h)−1g−1

]
(χ̃d)

× [
g−1(� − h)−1

] [
g−1(� − h)−1

]
(30)

where the tilde denotes the nontrivial part, which diagrammat-
ically corresponds to the vertex part with four Green function
legs attached. The terms in square brackets only contain single-
particle functions. Two-particle excitations are hence the same
for dual and lattice fermions.

4. Selected results

In this section we illustrate these concepts by results
for a freestanding chain at half-filling described by the
one-dimensional (1D) Hubbard Hamiltonian:

− t
∑

i σ

(
c∗
σ i+1cσ i + c∗

σ i−1cσ i
) + U

∑

i

n↑ i n↓ i . (31)
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Figure 3. Imaginary part of the local Matsubara Green function for
the 1D Hubbard model with U/t = 6 and T/t = 0.1. The results
from various dual-fermion iterations are compared to the zero
temperature DMRG Green function and the DMFT result.

The bare dispersion is given by hk = −2t cos(ka). Figure 3
shows the local part of the Green function as a function of
Matsubara frequencies. We compare the results from the dual-
fermion calculations to the one of an essentially exact density
matrix renormalization group calculation [24, 25] (DMRG) at
T = 0. It is clearly seen that the DMFT result in this figure is
qualitatively incorrect as it predicts the system to be metallic.
In the dual-fermion calculations the tendency to an insulator
can be seen already for the first dual-fermion iteration: the
Green function at the lowest Matsubara frequency bends up
as the hybridization � is renormalized during successive
iterations. The final result correctly shows insulating behavior.
It has been shown that in a cluster dual-fermion calculation
the result is substantially improved [26]. However, the single-
site approach is particularly appealing since it provides a
translationally invariant solution.

We note that, while there is no multiorbital formulation
of the DMRG, our approach offers a qualitative description
of 1D multiorbital systems. The present results may be
further improved by calculating the dual self-energy using
more diagrams, e.g. by a ladder diagram summation. This
work is in progress now and opens a way towards a realistic
and quantitative description of adatom chains on surfaces.

In order to address the issue of long-range order, we have
generalized our approach to facilitate the calculation of the
two-particle Green functions. This allows us to determine
magnetic instabilities. The dual two-particle Green function
is obtained from the two-particle vertex, which we find by
means of a Bethe–Salpeter equation depicted diagrammatically
in figure 4. The exact relation, which allows us to obtain
the two-particle Green function of the original fermions, was
given in equation (30). Figure 5 shows the dual spin–spin
susceptibility as obtained from the diagram in figure 4 as a
function of temperature. The results were obtained for the 2D
Hubbard model at half-filling, for U/t = 4 [21]. For lattice
and dual fermions the susceptibilities diverge in the q = (π, π)

channel corresponding to the antiferromagnetic instability.
In the inset of this figure we show the numerical

illustration of the statement that two-particle excitations and
corresponding instabilities are the same for dual and lattice

Figure 4. Left: the Bethe–Salpeter equation for the dual vertex in the
Sz = 0 particle–hole channel. Right: diagram for the dual
susceptibility χ̃d

zz .

Figure 5. Nontrivial part of the dual susceptibility χ̃d
zz calculated

from the diagram in figure 4 for different values of the transferred
momentum q. The instability occurs in the q = (π, π) channel.
Inset: comparison between the dual susceptibility χd

zz = χd 0
zz + χ̃d

zz
and the lattice susceptibility χzz for q = (π,π). The instability is the
same for dual and lattice fermions. Note the different scales.

fermions. Although the susceptibilities are different in
magnitude, they diverge at the same temperature.

5. Concluding remarks

We have discussed recent developments in the field of quantum
Monte Carlo solvers for the numerically exact solution of the
multiorbital impurity that may be used to describe adatoms
on surfaces. It was shown how two-particle correlation
functions can be measured in imaginary time. Analytical
continuation to the real axis provides information on two-
particle excitations. We have introduced the dual-fermion
approach in a formulation that allows us to incorporate the
material aspect into calculations of extended low-dimensional
nanosystems, such as monatomic chains on a substrate with
arbitrary density of states. It was shown that already the
lowest-order approximation gives very promising results even
for low-dimensional systems. We have further demonstrated
that susceptibilities can be calculated in this approach, which
allows us to address the problem of long-range order in
nanosystems.
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